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ABSTRACT

This thesis describes the design methodology and the process of employing
the GENESIL Silicon Compiler (GSC) (Version 7.1) in the layout of a pipelined
multiplier, in 1.5 micron CMOS technology, using a parallel multiplier cell
array. Additionally, background material on the GSC, the theory of
multiplication, as well as the concept and theory of pipelining are presented.

The results revealed two practical limits of the GSC system which precluded
achieving the high component density made possible by full custom, "manual”
CAD methods using graphic layout tools. Although the GSC system did not
perform as desired in this study, it offers a viable alternative to the labor-

intensive, full custom, VLSI graphic layout tools in use today.
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I. INTRODUCTION

A. BACKGROUND

Multiplication is often an essential function in many digital systems. For
example, a multiplier is a necessary part of any digital signal processing circuit
[Ref. 1]. In many signal processing operations, such as correlation, convolution,
filtering, and frequency analysis, one needs to perform multiplication [Ref. 2],
and, in order to perform real-time signal processing, a high-speed multiplier is
required [Ref. 3]. Additionally, in the majority of digital signal processing
applications the critical processing paths usually involve many multiplications
[Ref. 4]. Clearly, fast digital multipliers are one of the most important building
blocks in Very Large Scale Integration (VLSI) chips for advanced digital signal
processing.

In high-performance systems, many of the above operations are implemented
with bipolar device technology, which consumes a significant amount of direct
current (DC) power. On the other hand, Complementary Metal Oxide
Semiconductor (CMOS) technology can substantially reduce the power
consumption, but results in much slower device speed.

CMOS is a combination of P-channel and N-channel enhancement metal
oxide semiconductor field effect transistors (MOSFETs) used in a
complementary circuit arrangement that is useful in digital logic circuitry.
Among its advantages are that it has extremely low power dissipation, requires
only one DC power supply, operates over a wide range of supply voltages, and
can drive as many as 50 gate-inputs [Ref. 5]. The fabrication of a CMOS IC

(integrated circuit) requires a "prescription” for preparing the photomasks that




will be used in the manufacturing process. This "prescription” is a set of rules
which provides a link between the circuit designer and process engineer during
the manufacturing phase. The rules are often referred to as layout rules or as
design rules. The main objective of the layout rules is to make a circuit with
optimum yield in as small an area (geometry) as possible without jeopardizing
the reliability of the circuit [Ref. 2]. There are several ways to describe the
design rules. One way is by the "micron” rules which are stated as some micron
resolution. Micron design rules are usually given as a list of minimum feature
sizes and spacing required for all the masks in a given fabrication process [Ref.
2]. Hence, as indicated in the abstract of this report, the multipliers designed in
this thesis have a minimum feature size of 1.5 microns in CMOS technology. By
incorporating pipelining into the design, the throughput of a large CMOS circuit
can be improved significantly [Ref. 4]. For example, the results of a study by
Hallin and Flynn [Ref. 6] indicated that pipelining can give a 40 percent increase
in adder efficiency and a 230 percent increase in multiplier throughput.

With the advent of high-speed semiconductor memory, an increasing
mismatch between memory access and multiplication time has arisen.
Consequently, there is considerable interest in parallel array multipliers [Ref. 7].
An array multiplier and a multiplier using a Wallace tree are well-known for
their high-speed multiplication [Ref. 3]. The previous study by Hallin and Flynn
[Ref. 6] also demonstrated that the most efficient multiplier is a maximally
pipelined tree multiplier which was shown to be 50 percent more efficient than
the array multiplier. However, because unit cells in the array multiplier are used
repeatedly its layout is highly modular. Modularity makes the array multiplier
more favorable than a tree multiplier for VLSI implementation. Therefore,

many MOS multipliers have been fabricated using this method [Ref. 3].
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As ICs grow increasingly more complex, it becomes necessary to develop
new methods to manage the design complexities, as well as the expenses
associated with the design and testing of the IC. Also, from this increase in IC
complexity arises the demand for faster and more economical methods to
streamline the design process. One state-of-the-art solution to meet this demand
is the silicon compiler. A silicon compiler is a computer system which generates
IC layouts from high-level descriptions. The advantage that a silicon-compiler-
based process has over a custom IC system design process is that the latter
requires a team of experts in the fields of logic implementation, circuit
simulation, chip layout, and testing. However, the design process based on the
silicon compiler may be accomplished by one individual utilizing a top-down,
hierarchical design methodology beginning with a partitioned chip set,
progressing downward into individual chips and modules, and terminating at the
block level. There is far less time required to design a IC using a silicon
compiler than for a full custom, "manual” CAD method using graphic layout
tools. Thus, one can see that the silicon compiler provides a streamlined method
for rapid development of IC systems [Ref. 8]. The disadvantages of the silicon
compiler are that the resulting circuit is often slower and the layout is not always

efficient in its use of area.

B. THESIS GOALS

The motivation for this thesis was to learn more about digital multipliers, as
well as to work with state-of-the-art VLSI circuit design tools. The main goal of
this thesis was to design a pipelined multiplier using the GENESIL Silicon
Compiler. Concomitant with this goal was the desire to learn more about the

concept and theory of pipelining. An emphasis has been placed on documenting




the thought processes that went into the multiplier designs in this thesis, as well
as the problems encountered along the way. Additionally, it was a goal to fully
explore and probe the GENESIL Silicon Compiler to determine its practical
limits in parallel multiplier array design. Finally, there was an attempt to
produce a document that could be understood by one not well versed in digital
design methodology by first reviewing the basis concepts of digital multipliers
and then discussing the concept and theory of pipelining.

The following is a description of each of the chapters which follow:

Chapter 2: Introduces the reader to the GENESIL Silicon Compiler.

Chapter 3: Presents three multiplier formats: serial, serial/parallel, and
parallel.

Chapter 4: Presents the basic concepts of pipelining.
Chapter 5: Discusses the design process of a pipelined multiplier array.
Chapter 6: Discusses the limitations of the silicon compiler.

Chapter 7: Concludes the thesis with a summary and recommendations for
follow on multiplier design.




II. GENESIL SILICON COMPILER

A. INTRODUCTION

The purpose of this chapter is to introduce the reader to the GENESIL
Silicon Compiler (GSC) system. The intent is to present a broad overview of
GSC capabilities so that the reader may become acquainted with the features used
in this report. For a detailed description of the GSC system the reader is referred

to References 9 through 11.

B. GENESIL SYSTEM DESCRIPTION

The GSC system is a design automation software system which allows
systems engineers and circuit designers to design complex VLSI computer chips.
GENESIL produces IC designs from architectural descriptions and allows for
their verification. Figure 1 shows a block diagram of the GSC development
system and Figure 2 depicts the overall layout of the GSC system hardware. The
GSC design tasks and activities are listed in Figure 3 and it is these activities that
will be emphasized in this chapter.

The GSC is based on an object-oriented hierarchical system running under
the UNIX operating system. The objects consist of Blocks, Modules, Chips, and
Chip-sets.

Use of the GSC system does not require design considerations at the
transistor gate level. A systems engineer or circuit designer can simply
incorporate into his layout one of the myriad of GSC circuits resident in the GSC
library. The resident circuits in the GSC library consist of random access

memory (RAM), read only memory (ROM), programmable logic arrays (PLA),




arithmetic logic units (ALU), multipliers, and several less complex circuits such

as basic logic gates and data-path elements [Ref. 12].

UNIX:
GENESIL
< Knowledge Base
Designer—>» Design Definition e «—| Function Sets

1

A

Compilers

l \ 1

Timing Simulation Geometric
Model Model Model
1 1 b
Timing Functional Tapeout
Analysis Simulation

Utilities

Design Database

Package Library

Figure 1  GENESIL Silicon Compiler Developmental System

[From Ref. 9]
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ULTRIX-32 System, Version 2.2

Figure 2 GENESIL Silicon Compiler Hardware System
(From Ref. 12]
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Figure 3 GENESIL Design Activities [From Ref. 12]




Before leaving this section the reader should become acquainted with the
following tasks and activities of the GSC development system in order to derive
the maximum benefit from the design process described in Chapter 5. For a

detailed explanation of each task or activity the reader is referred to [Refs. 9-11].

C. TASKS AND ACTIVITIES
1. DEFINITION
The DEFINITION activity is the process whereby the user defines an
object using the options provided in the DEFINITION menu. Defining an object
consists of accessing the HEADER and SPECIFICATION forms from the
DEFINITION menu.
A. HEADER
Use of the HEADER option allows the user to display the HEADER
form, which is dependent on the current object connected to the user's account.
The HEADER form allows the user to specify the technology and fabrication
lines (fablines) to be utilized in the users design. The selected choice propagates
down the entire hierarchy. The fabline selection process used in this thesis will
be discussed in Chapter 5.
B. SPECIFICATION
Use of the SPECIFICATION form, which is also dependent upon
the current object attached to the user's account, allows the user to fill in detailed
object characteristics. For example, if one were using a FIFO Block in his
design, he could specify its width, depth, output register, and connectors through
use of the SPECIFICATION form.




2. NETLISTING
NETLISTING allows the user to specify the interconnections between
Blocks and Modules to form higher level functional Modules. This is
accomplished through the use of NET_NETLIST and OBJECT_NETLIST. It
should be noted that they both provide the same information but from different
points of reference.
A. NET_NETLIST
NET_NETLIST is used to specify the signal names to be connected
into a network, and once they are defined, the GENESIL System then creates the
network.
B. OBJECT_NETLIST
OBJECT_NETLIST allows the user to specify the signals on Blocks
or Submodules in a Module or Modules in a Chip, and the GENESIL system then
creates the connections between the specified objects.
The author found these two options to be the most important of the
GSC options used in this thesis. A mastery of these two options is paramount to a
successful and trouble-free design evolution. It was preferable to establish the
initial connections with OBJECT_NETLIST, and, if errors arose, they were
investigated with NET_NETLIST. NET_NETLIST allows one to trace signal
names and their associated connections.
3. FLOORPLANNING
FLOORPLANNING is the placement of objects on the Chip, the
specification of their FUSION order, and the connection of the pins to the pads
of the Chip. The FLOORPLANNING task prepares the design objects for
routing. One should be aware the FLOORPLANNING activities have a




significant influence on the efficiency of the router. FLOORPLANNING consists
of the following activities:
A. PLACEMENT
PLACEMENT specifies an object's location relative to other objects
in a Module or Chip. This is usually done graphically by either selecting the GSC
AUTO-PLACEMENT option or by manual PLACEMENT by the user. In
almost all cases the author preferred manual PLACEMENT over AUTO-
PLACEMENT. A further discussion of the PLACEMENT activity will be held
in Chapter 5.
B. FUSION
The FUSION activity allows the user to graphically create and
modify the assignments of routing channels on the floorplan to influence wire
routing. This option was not frequently used in this study although some
experimentation was conducted. There was no real enhancement observed to the
designs in this thesis when employing this option. Because the compiling process
and the plotting of the layout designs were very time-consuming (on the order of
several hours for large layouts), it was difficult to the justify the investment of
time for what little effect (if any) was observed.
C. PINOUT
PINOUT assigns external signals, both on and off the Chip. The user
must be aware of the assignment of pins as it affects the routing both on and off
the Chip.
4. COMPILE
The COMPILE activity can be initiated by the user or by the GENESIL
system. GENESIL automatically performs a currency check on all objects, and if

any are determined to be out of date it does a compile before any of the activities
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requiring compilation. A design must first be compiled before any significant
activity can be started. Here, the author found it to be a time-saving investment if
modular subcomponents were first compiled prior to building larger arrays
incorporating these same subcomponents.
5. FUNCTIONAL SIMULATION
A. SIMULATE
SIMULATE is the operation to simulate the logical functioning of
the IC design under consideration. One may test the IC design using automatic
test vectors or by initiating manual simulation by binding the input pins to a "0"
or "1" and manually advancing the time. Note that this process does not check the
timing of the circuit. The manual method was used to test and simulate the
designs reported on in this thesis. For large numbers, the product was verified
with an HP-28S hand-held calculator. This topic is elaborated on in Chapter 5.
6. TIMING ANALYSIS
The GENESIL Timing Analyzer can calculate and report on the

following areas:

» Speed at which the object under analysis will run.

* Paths that limit the clock frequency.

* Duty-cycle (phase high time) constraints.

* Input setup and hold times.

* Output delays.

» Setup and hold times and signal delays for any internal nodes.
* Path delays between internal nodes.
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I1I. MULTIPLIER BASICS

A. BASIC MULTIPLIER DESIGN

This section provides a brief review of basic multiplier design as background
before discussing the parallel multiplier arrays implemented in this report. The
formats that will be discussed are the serial form, serial/parallel form, and the
parallel form; the Wallace tree multiplier will also be briefly discussed. One
should keep in mind that the selection of a specific multiplier to be incorporated
in a particular design is based on speed, throughput, numerical accuracy, and
area [Ref. 2]. |

Before beginning a discussion on the various forms mentioned above, the
most basic form of multiplication will be discussed first. This is shown in Figure
4 which illustrates the multiplication of two positive binary integers, 141¢ and

T1o.

multiplicand; 1110 = 14,4p
multiplier ; Ot11 710
1110
1110
1110
0000

1100010 : 98,

Figure 4 Basic Form of Multiplication
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The multiplication is accomplished through successive additions and shifts.

This multiplication process may be separated into the following two steps:
* Evaluation of partial products.
~« Addition of the shifted partial products.

It should be pointed out that one-bit binary multiplication is equivalent to a
logical AND operation. Thus, the evaluation of partial products consists of the
logical ANDing of the rﬁultiplicand and its associated bit in the multiplier.

1. Serial Multiplier

The simplest example of a serial multiplier is illustrated in Figure 5.
Here, multiplication is accomplished through a successive addition algorithm and
is implemented using a full adder, a logical AND, a delay element, and a serial-
to-parallel register. The numbers X and Y are presented serially to the circuit
and the partial product is evaluated for each bit of the multiplier. Next, a serial
addition is performed with the partial additions previously stored in the register.
The G2 gate resets the partial sum at the beginning of the multiplication cycle

[Ref. 2].

oz | RESET
N

xj‘ 61) v S SERIAL TO PARALLEL
v 2 REGISTER

o
cI Co
L1 a4 ] a | = DELAY ELEMENT

E = FULL ADDER

Figure 5 Basic Serial Multiplier [From Ref. 2]
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2. Serial/Parallel Multiplier

The basic implementation of the serial/parallel multiplier form is

illustrated in Figure 6. Here, multiplication is performed by successive additions

of columns of the shifted partial products. As left-shifting by one bit in serial

systems is accomplished by a 1-bit delay element, the multiplier is successively

shifted and gates the appropriate bit of the multiplicand. The bits of the delayed,

gated multiplicand must all be in the same column of the shifted partial product.

They are added to form the product bit corresponding to the appropriate column

|Ref. 2].

Yo Yy Y2

YNt

!
.

_—
) > —d ¥
t:l [ C. c° <, c°
a L], s
Xomxy v XXy Xy
Yom Yy %% % T | - Fuw apoena a = DELAY ELEMENT

Figure 6 Basic Structure for Serial/Parallel Multiplier

[From Ref. 2}
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3. Parallel Multiplier

The parallel multiplier form is the one utilized in the design of the
multipliers in this thesis. This form was selected primarily because, when
incorporated into an array, the unit cells of the multiplier can be used repeatedly,
resulting in a highly modular arrangement. Recall that this characteristic makes
the parallel array multiplier favorable for VLSI implementation.

In a parallel multiplier the partial products in the multiplication process
can be independently computed in parallel. For example, in the case of two

unsigned binary integers X and Y:
m-1
X = z X;2!
i=0 (3.1)

n-1
=Y Y2

j
j=0 (3.2)

The product is found by

=XyY; = 2 Xi2'- Z Y2 .

m-1n-1 o
=Y Y (Xiy)2't]
i=0 j=0
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The partial product terms Py are called summands. There are mn
summands, which are produced in parallel by the multiplication of mn AND
gates [Ref. 2]. Figure 7 illustrates the partial products formed by the

multiplication of two 4-bit numbers.

X3 X2 X1 X0  Multiplicand
Y3 Y2 Y1 Yo Multiplier

X3Y0 X2Y0 X1Yo XoYo
X3Y1 X2Y1 X1v1 Xovi
X3Y2 X2v2 Xiyz Xoy2
X3Y3 X2Y3 X1Y3 XoYy3

p7 P6 P5 P4 P3 P2 P1 PO Product
Figure 7  4-Bit Multiplier Partial Products [From Ref 2]

For an n x n multiplier the required number of components would be
n(n-2) full adders, n half adders, and n2 AND gates. The worst-case delay
associated with such a multiplier is (2n = 1)tg, where Tg is the worst-case adder
delay. Figure 8 illustrates a typical parallel multiplier cell which forms the basis

of the multipliers designed in this thesis.

p

lL !

c

Figure 8 Parallel Multiplier Cell [From Ref. 2]
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Note in Figure 8 above, that the Xj term is propagated vertically, while
the Yj term is propagated horizontally, and that the partial products enter at the
top left of each cell. A bit-wise AND is performed in each cell, and the SUM
(P;4+1) is forwarded to the next cell at the lower right. The CARRY OUT (Cij41)
is forwarded out the bottom of the cell. Figure 9 illustrates a parallel multiplier

array with the partial products formed within each parallel multiplier cell.

%, X, X, X,
Yo X3 Yo X, Yo X, Yo Xy Yo
P
C J
Y, X, Y, X, ¥, X, ¥, X, Y,
Pie
Ci+1 $
Y, X3 vz %, Ye X, Y, X, Yz
<
Y, Xy Yy X, Y, X Yy % Ys
v 1L 1L 1L 1L VL
P Py P, e, Py P, P, Po

Figure 9  Parallel Multiplier Array [From Ref. 2]
As alluded to earlier, an important feature of the parallel multiplier
array is that the unit cells of the multiplier can be used repeatedly, resulting in a
highly modular arrangement. This arrangement of parallel multiplier cells can
be drawn as a square array as indicated in Figure 10. Here, one can clearly see

how the Xj and Yj terms are propagated throughout the array by vertical and

17




horizontal feedthrough, respectively. As mentioned previously, this feature

makes the parallel array multiplier highly favorable for VLSI implementation.

Figure 10 Parallel Multiplier Array Drawn as a Square Array
[From Ref. 2]
4. Wallace Tree '

A general discussion of digital multiplier design would not be complete
without some mention of the Wallace tree. As stated earlier, a study by Hallin
and Flynn [Ref. 6] demonstrated that the most efficient multiplier is a maximally
pipelined tree multiplier which was shown to be 50 percent more efficient (with
less overall delay) than an array multiplier.

The Wallace tree layout (Figure 11) is significant in that it utilizes a
matrix generation and reduction scheme, which is the fastest way to perform
parallel multiplication. However, it has some disadvantages when implemented in
VLSI. The full Wallace tree is topologically difficult to implement. Large
Wallace trees are difficult to map onto planes sirice each carry-save adder
communicates with its own slice, transmits carries to the higher order slice, and
receives carries from a lower order slice. This topology creates both 1/O pin
difficulty and wire routing problems [Ref. 13]. Because a parallel array is highly

modaular, it was selected over the Wallace tree for implementation in the GSC.
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Figure 11 A Wallace Tree [From Ref. 14]
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IV. PIPELINING

A. INTRODUCTION

The purpose of this chapter is to introduce the reader to the concept and
theory of pipelining. As indicated in the title of this thesis, CMOS technology
was utilized in the implementation of the parallel multiplier arrays designed in
this thesis. It was previously noted that CMOS technology can substantially
reduce the power consumption of a device, but results in a much slower device
speed. Furthermore, it was noted that a parallel multiplier array operates at a
slower speed than a multiplier tree [Ref. 13]. By incorporating pipelining into
the design, however, the throughput of a parallel multiplier array may be

substantially improved.

B. BASICS OF PIPELINING
1. Bandwidth and Latency

When one reads the literature on pipelining one will observe that the
term bandwidth is often associated with pipelining. Bandwidth is defined as the
number of tasks that can be performed per unit time interval [Ref. 13]. For a
system that operates on only one task at a time, latency is the inverse of
bandwidth, and for a given latency the bandwidth can be increased by pipelining,
which allows for the simultaneous execution of many tasks [Ref. 13]. Figure 12
illustrates the pipelining concept by showing that a system with latency of n gate
delays can be operate at bandwidth of 1/n, 2/n, 3/n, etc. Figure 13 illustrates a
pipelined carry-save multiplier array; note the placement of the delay gates. This

increase in bandwidth may be accomplished by dividing the combinational logic
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into separate stages which are in turn separated by latches [Ref. 13]. The goal of
designing a multiplier using pipelining is fast operation. If some function can be
executed in X ns, and the design can be separated into N stages, then a pipeline
designed to perform the same function repeatedly can perform that function in
times down to X/N ns [Ref. 14]. An important question one might ask regarding
pipelining is what is the maximum rate at which a particular pipeline can

operate. This is discussed in the following section.

'
¢

(a)

LATCH > COMBINATORIAL LOGIC ﬁ
1 n gate delays ‘

(b)

n/2

LATCH n/2 LATCH
1 :> gate delays :> 2 :> gate delays :>

(c)

n/3 gate

LATCH n/3 gate LATCH n/3 gate LATCH
1 :"> delays :> 2 :> delays :> 3 :> delays :>

Increasing bandwidth by pipelining.

a. nonpipelined system bandwidth = 1/n.

b. 2-stage pipelined svstem bandwidth = 2/n.
c. 3-stage pipelined system bandwidth = 3/n.

+

Figure 12 Increasing Bandwidth by Pipelining [From Ref. 13]
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Xo¥a XoY2 XoY¥4 XoYo
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x;v, X, Y2 X1 Y4 XYo
; \ \ ‘ 45 \
X2¥3 X2Y2 XaY4 XaYo : ::1:
‘ y * Y Y \ v
x;v, X3z XaY¥s Xa¥o :1:‘ ﬁ: =

>
.
|

PEVERES

Y
CARRY LOOKAHEAD ADDER
Sy Ss Sg S, S3 S, S Sp

Pipelined carry-save multiplication array. The square boxes are carry-save
adders with three latches. Each square box has three inputs: a sum and 3
carry {rom previous carry-save adders, and the third is the partial product
X, -Y;. The ten unmarked rectangles on the right are 1-bit latches to keep
correct timing.

Figure 13 Pipelined Carry-Save Multiplier Array [From Ref. 13]
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2. Analysis of a Pipelined Stage
The following definitions are commonly used in the analysis of pipelined

stages:
tx = propagation time through combinational logic
(f) for this stage of the pipeline (see Figure 14 (a) and (b)).
ty = minimum propagation time through the combinational logic

() for this stage of the pipelining.
ts = flip-flop setup time; the amount of time data has to be valid prior to

the clocking edge.
t, = amount of time data must be valid after clocking edge (hold time).

fo—— 1 ——
e R
SN \\N \\N
et —ei | tx -—
rxy) NN NN

(3) Timing scheme

PIPELINE {D
STAGE F L— output f(x; )

N

B )

input (xl) —

\d—[x—bl

Clock

(b) Pipelined stage

Figure 14 A Pipeline Stage

The above definitions can be used to determine the timing restrictions

for a pipelined circuit. For an edge-triggered D Flip-flop;

max (tr +tx) +ts<T
min (tr +tx) > th
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V. DESIGN PROCESS OF A PIPELINED MULTIPLIER

A. DESIGN CONSIDERATIONS

This chapter will describe the design process for the parallel multiplier
arrays implemented in this thesis. The previous sections were provided to
establish a background for the design process. To gain more insight into the
discussions which follow, it is highly recommended that the reader work through
the tutorial section of [Ref. 8], although this is not an absolute requirement. The
GSC system manuals include a tutorial section. However, this author believes it
was written with the presumption that'the reader had attended a one-week course
of instruction taught by the Silicon Compiler System Corporation of San Jose,
California. Withou. this course of instruction the user may have some difficulty
working through the tutorial sections until some proficiency has first been
acquired.

As stated earlier, the parallel multiplier array of Figure 8 (incorporating the
parallel multiplier cell) was selected for implementation in the GSC. This
decision was based primarily on the array's modular architecture. It was also
apparent that its feature of horizontal and vertical feedthrough was advantageous
for implementation in VLSI because the routing of the inputs Xj and Yj
throughout the entire array would be simplified.

1. Modeling the Parallel Multiplier Cell
One of the first design considerations contemplated was how to model
the basic parallel multiplier cell of Figure 8. In Figure 8, the bit-wise ANDing of
the partial products occurs inside the cell's boundaries. The results of each bit-

wise AND is summed with the SUM of another multiplier cell, as well as with a
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CARRY IN. The author determined that this cell could be implemented in
GENESIL by using a 1-bit full adder with one input being provided by the
output of an AND gate (from the formation of the partial products) and the other
from the SUM of another adder. Note that a 1-bit full adder also provides for a
CARRY IN and CARRY OUT. Figure 15 shows the basic cell and its layout is

illustrated in Figure 16.

X Yy

SUM IN N CARRY IN

A B CIN

1 BIT FULL
ADDER

ouT couT

Sur our CARRY OUT

Figure 15 Parallel Multiplier Cell for Implementation in GENESIL
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Figure 16 GENESIL Layout of a Parallel Multiplier Cell
(101.6 mils?)
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2. Selecting a Fabline
The next design consideration was to select a "fabline”, that is, a
particular set of design rules used by a foundry to manufacturer a Chip. Because
Stuart [Ref. 15] did a full custom parallel multiplier array design using 1.5
CMOS, the same micron technology was selected for this study to enable a

comparison of results. Figure 17 shows the fablines available for selection.
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Figure 17 Selection of a Fabline
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Note that fablines which include the number 15 are 1.5 pm technology.
To assist in the selection of a particular 1.5 CMOS fabline speed was used as the
criterion. To determine which fabline was the fastest, a timing analysis was
performed on four adders each incorporating a different 1.5 pm fabline. Figure
18 illustrates a linear view of a GENESIL 1-bit full adder (note the labeling of
the signal lines), and Figure 19 illustrates the layout of a 1-bit GENESIL full
adder.

1
T

== L:‘TB DIRR § bty

T
|
|

Figure 18 Linear View of a GENESIL 1-Bit Full Adder
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Figure 19 GENESIL Layout of a 1-Bit Full Adder
The results of the timing analysis are listed in Table 1. The NSC_CN15A

fabline was selected because it had the smallest maximum output delay for both

the CARRY OUT (cout[0]) and the SUM OUT (sout[0]).
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TABLE 1

OUTPUT DELAYS FOR A GENESIL 1-BIT FULL ADDER

cout[0] sout[0]
Ph1 (r) Delay(ns)| Ph1 (r) Delay(ns)
Fabline Min | Max | Min | Max | height (mils) | width (mils) | area (mils2)
TSB_CP15A 2.8 7.2 2.8 7.2 891 4.28 38.08
NCR CNI15A 3.5 8.4 3.5 8.4 8.91 4.28 38.08
US2 CN15A 3.5 8.1 6.3 7.5 10.09 4.85 48.91
NSC _CN15A 2.1 5.1 39 4.9 891 4.28 38.08

Note: 1 mil = 0.001 inches

In addition to the 1-bit full adder, a GENESIL D flip-flop was also

tested to determine if there was a difference in the output delay for each 1.5 pm

fabline. The results are listed in TABLE 2. As expected, in view of the results in

TABLE 1, the NSC_CN15A fabline produced a shorter output delay than the

other fablines. Figure 20 illustrates a linear view of a GENESIL D flip-flop and
Figure 21 illustrates the GENESIL layout of a D flip-flop.
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TABLE 2
OUTPUT DELAY FOR A GENESIL D FLIP-FLOP

Phl (r) Delay(ns)
Fabline Min | Max | height (mils) | width (mils) | area (mils?)
TSB CP1SA 4.5 5.0 3.27 8.46 27.63
NCR_CNI15A 6.0 6.2 2.88 7.46 21.51
US2 CN15A 4.8 5.8 2.88 7.46 21.51
NSC CNI15A 3.8 4.0 2.88 7.46 21.51
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Figure 20 Linear View of a GENESIL D Flip-Flop
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Figure 21 GENESIL Layout of a D Flip-Flop
The following section will begin describing the design process and the

integration of the parallel multiplier cells into functional multiplier arrays.
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B. DESIGN OF A 4-BIT PIPELINED MULTIPLIER ARRAY
1. Signal Naming Scheme

The author made a decision early in the implementation phase to first
demonstrate the feasibility and functionality of the parallel multiplier array by
constructing a 4-bit unsigned multiplier. Once the basic design was validated, a
pipelined version and larger arrays were then constructed.

Using a CAD, a 4-bit version of Figure 9 was drafted and is shown in
Figure 22. However, before the drawing could be made it was necessary to
devise a signal naming scheme. A requirement was set that this scheme must
impart some information on the origin of a signal, to assist in trouble shooting
the circuit, as well as be applicable to all of the parallel multipliers implemented
in this thesis.

Therefore, the scheme was based on a labeling convention similar to that of a
full adder. For example, the signals SUM OUT and CARRY OUT were labeled
as product out "po"” and carry out "co", respectively. These labels were further
modified to "pokj" and "cokj", where k indicates the level number and j indicates
the adder position in a particular level. Here, k ranges from O to n , where n is
the number of bits the multiplier is capable of operating on. The j indicates the
position of the adder from the right-hand side of the level in which it is located
and it ranges from O to n — 1. For example, "po23" indicates the signal "product
out” from level 2 adder 3. Additionally, all AND gates were labeled according to
the partial products they form. For example, X2Y¢ indicates the ANDing of the
partial products X7 and Y. Furthermore, each row of adders were labeled as

"level_k" and each adder was labeled as "ADDKkj", where k and j correspond to
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Figure 22 CAD Layout of a 4-Bit Parallel Multiplier Array
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the level number and the adder's position, respectively. Finally, the last row of
adders was labeled as "FAPx" where x indicates a particular final product. For
example, "FAP4" indicates the final adder whose output is product 4.

2. 4-Bit Multiplier Array

From the very start of the construction phase for the 4-bit multiplier
array, there were questions regarding what method(s) and what Blocks or
Modules should be employed to build the arrays. The first approach at
constructing the array was to create a random logic Block (labeled multi_4bit).
After selecting the fabline NSC_CN1S for this Block, 19 full adders, 16 AND
gates, and one OR gate were attached to it through the use of the options
SPECIFICATION and NEW. These components were then connected as in
Figure 22 by indicating the appropriate signal names in the SPECIFICATION
form. The SIGNALS function was then used to designate whether a particular
signal was an "input, output or bi-level." This first attempt resulted in a long
"stick-like" structure (see Figure 23) which would not be suitable for a Chip
layout simply due to its inefficient use of space. If larger multipliers were
constructed using this method one would produce long arrays whose length
would be proportional to the number of bits to be multiplied. Therefore, other
methods were sought to reduce the length of the array.

One method considered was to simply divide the array into rows of
adders (similar to Figure 10) according to their level by putting each row of
adders in random logic Block. Each random logic Block would then be attached
to a general random logic Module (labeled 4bmm; for 4-bit multiplier module)
and the rows of adders would be interconnected again as in Figure 22. When

implemented, this method proved successful in reducing the previous "stick-like”
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structure to a more compact modular arrangement. Figure 24 is the GENESIL

layout of this new modular arrangement.
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Figure 23 GENESIL Layout of multi_4bit
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Figure 24 GENESIL Layout of 4bmm (1,958.3 mils?)
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The construction of the rows of adders (levels) in thé modular
arrangement was accomplished through the employment of a generic "level_k".
As stated previously, a random logic Block was defined and four adders and four
AND gates were attached to it. The Block was then label as level_k. Through the
use of "ATTACH EXISTING", while the Module 4bmm was at the top of the
hierarchy, the generic level_k was successively attached. Each time level_k was
attached to the Module it was renamed according to it assigned level in Figure
22. The last row of adders was constructed by simply deleting the AND gates and
1-bit full adder from the generic level_k, and attaching an OR gate. The generic
level_k is illustrated in Figure 25. Figure 26 is a GENESIL linear view of the
generic level_k. A CAD drawing of the general random logic Module 4bmm

illustrating its block level layout is shown in Figure 27.
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GENERIC - RANDOM LOGIC BLOCK CALLED "level_k"

ADDK j ADDK | ADDK § ADDK §

GENERIC - RANDOM LOGIC BLOCK IS COMPOSED OF 4
ADDER/AND COMBINATIONS

k = level (increasing from top to bottom) and j= adder position
(increasing from right to left)

k from O to n, where n=number of bits the multiplier is the
capable of operating on.

jfromOton-]

i.e. ADDO2: 1level_0, adder number 2

X Y

SU1 m CARRY 1N

A B CIN

1817 FULL
ADDER

ouT cout

.

SUMOUT  CARRY OUT

EACH ADDER/AND COMBINATION IS COMPOSED OF
A PARALLEL MULTIPLIER CELL

Figure 25 CAD Depiction of Generic Level k
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GENERAL MODULE (Random Logic) called "dbmm”

"level_1

ADDO3 ADDO2 ADDO!1 ADDOO

ADDI13 ADD12 ADD I ADDI10

ADD23 ADD22 ADD21 ADD20
ADD33 ADD32 ADD31 ADD30

FINAL ADDERS

“level _O"

"level_2"

"level_3"

"level_4"

Figure 27 General Module dbmm




A. Version 1

After a close inspection of Figure 24 (from this point on this layout
will be referred to as 4bmm.1 to indicate version 1 of 4bmm) the author decided
that the modular arrangement of Figure 27 was probably the best one to use
when implementing parallel multiplier arrays in GENESIL.. This decision was
based primarily on the modular arrangement of the parallel multiplier cells, as
well as the overall symmetry of the layout.

Before attempting to improve on the initial layout of Figure 24, the
functionality of the multiplier array was verified. This was a simple task and was
accomplished as described on page 102 of Reference 7. Several different binary
numbers were multiplied and their resulting products were verified using a
hand-held HP-28S calculator. The following is an example of how multiplication
was performed by GSC. The assignment of binary values to the inputs of
4bmm.1, x[3:0] and y[3:0], and the product of multiplication is illustrated in

Figures 28 and 29, respectively.
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Following the verification of the functionality of 4bmm.1, a timing
analysis was performed to determine the output delays for each product P[7:0].
This was accomplished by selecting TIMING from the Executive menu and
executing OUTPUT_DELAY. The results are listed in Figure 30 and indicate
4bmm.1 can theoretically be operated at approximately 29 MHz (1/34.7 ns). This
calculation is based on the output delay of P7 since it is the limiting product; it
has the largesi maximum delay of the other products.

Once 4bmm.1 was verified to be operating correctly, attempts were

made to improve the speed and reduce the size of the array, by experimenting
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with changing the order and the location of the adder levels and by replacing
"FAP4-6" with a GENESIL library 3-bit adder.
B. Version 2

Version two of the array was created by replacing the final adders
of level_4 (FAP4-6) with a GENESIL library 3-bit adder (see Figure 31). As in
version one, a functional verification was conducted first before performing a
timing analysis. The results of the timing analysis are listed in Figure 32 and the
layout of 4bmm.2 is shown in Figure 33. One can see from the results in Figure
32 that the use of the GENESIL library 3-bit adder in level_4 resulted in a slight
reduction in the output delay for P7. The operating speed was calculated to be
approximately 30 MHz, and there was no significant change in size. However,
comparing the layout of level_4 of version 1 and 2 shows that the GENESIL 3-
bit adder of version 2 is of higher density than the 3 individual 1-bit adders of

version 1.
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Figure 30 Timing Analysis of 4bmm.1
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C. Version 3

Version 3 (4bmm.3) was the first attempt at reordering the adder
levels to determine what effect this would have on the size and speed of the
array. When developing versions 1 and 2, the ordering of the levels was
determined by the AUTO_PLACEMENT option from the PLACEMENT menu
which is a submenu of FLOORPLANNING. Although the specifications of the
array were entered into the GSC as in Figure 22, this did not necessarily
guarantee that the levels would be oriented in the same manner. When
performing FLOORPLANNING the user can elect to use either
AUTO_PLACEMENT or manual PLACEMENT to arrange the relative
positions of the levels. For versions 1 and 2 AUTO_PLACEMENT was selected.
It uses an algorithm built into the GSC to determir : the best placement of the
individual levels. Figure 34 illustrates the AUTO_PLACEMENT of the adder
levels as determined by the GSC. Note that the order is arranged according to the
speciﬁcatioﬁs of Figure 22, with the exception that the final adders (level_4) are

located to the right of level_0.

fevel_3
Lo ]
leve |l .2
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Figure 34 AUTO_PLACEMENT of Adder Levels (V1&2)
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In version 3 (4bmm.3) the order was rearranged from top to
bottom, using manual PLACEMENT, according to the “logic flow". This
reordering is illustrated in Figure 35. Note that the final 3-bit adder (level_4) is
now located below level_3. A GENESIL layout of this arrangement is shown in

Figure 36.
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Figure 36 GENESIL Layout of 4bmm.3 (1,845.63 mils2)

From the results of a timing analysis performed on 4bmm.3 it was
determined that the reordering had no significant effect on the output delay of
P7. The output delay for P7 of 4bmm.2 was 32.5 ns and for 4bmm.3 it was 32.4
ns. However, there was a 6% reduction in the overall size of the array. The
4bmm.2 design had total area of 1964.02 mils2 while that of 4bmm.3 was
calculated to be 1845.63 mils2. Close inspection of Figure 36 reveals that there is
almost an equal distribution of metal above the final adders of level_4. One can
sce metal stretching from the lower right side of level_3 across to the adders of
level_4. Level_4 was centered directly below level_3 to see if the metal routing
could be more equally distributed and perhaps further reduce the total area. This
was accomplished in version 4 below.

D. Version 4

As stated above, version four (4bmm.4) was simply a centering of

level_4 directly below level_3. The layout of 4bmm.4 is shown in Figure 37.

Again, there was no further reduction in the output delay of P7, however, there
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was a very slight reduction in the size of the array. The total area of 4bmm.4
was calculated to 1835.9 mils2 which is a 1% reduction in the total area of
4bmm.3. Also, note that the metal routing between levels 3 and 4 has been

thinned out.
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L 4“ } “s ;%

», '
i, l

Figure 37 GENESIL Layout of dbmm.4 (1,835.9 mils2)
3. 4-Bit Multiplier Array with Registered Inputs/Outputs
A. Version 1
When multipliers are implemented in actual circuits they are often
constructed with registered inputs and outputs. This is essential for pipelined
multipliers. Therefore, a bank of 8 D flip-flops was added to the inputs, x[3:0]
and y[3:0], and to the produCts P[7:0] as illustrated in Figure 38 (labeled
4bmm1.RIRO). Here, AUTO_PLACEMENT was used to see what the GSC
system would determine to be the best placement of the adder levels and the two

banks of D flip-flops. The resulting floorplan is shown in Figure 39. Note
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how the AUTO_PLACEMENT algorithm placed the input registers next to the
level _3 adders. One can see similarities here between the floorplans of 4bmm.1
and 4bmm.2 of Figure 34. It appears the AUTO_PLACEMENT algorithm
favors the placement of level_4 next to level_0. Figure 40 is a GENESIL layout
of 4bmm1.RIRO.
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Figure 40 GENESIL Layout of 4bmml1.RIRO (2,551.69 mils2)
B. Version 2

Version 2 (4bmm2.RIRO) is 4bmm.4 with registered inputs and
outputs. It was implemented in the same fashion as 4bmm1.RIRO, however,
manual PLACEMENT was used instead of AUTO_PLACEMENT. The input and
output registers were manually placed as drawn in Figure 38, and the resulting
floorplan is illustrated in Figure 41. Here, one can see an overlap between
adjacent levels. The was done manually to determine what effect overlap would
have on the GSC. The resulting layout of 4bmm2.RIRO is shown in Figure 42.
The total area of 4bmm2.RIRO was 2459.07 mils2 while 4bmm1.RIRO totaled
2551.69 mils2., The 4bmm2.RIRO design resulted in approximately a 3.6 %
reduction in area compared to 4bmm1.RIRO, and had a much "cleaner” looking

layout.
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Figure 41 Floorplan for 4bmm2.RIRO
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Figure 42 GENESIL Layout of 4bmm2.RIRO (2,459.07 mils2)
4. 4-Bit Pipelined Multiplier Array
After experimenting with the 4-bit multiplier array, the author
concluded that the best arrangement for the registers and adder levels was as
indicated in Figure 42. As demonstrated by the timing analysis for 4bmm.2 and
4bmm.3, there was no significant reduction in the output delay of P7 when the
adder levels were oriented in the order of "logic flow". However, it was
demonstrated that orienting the adder levels in the order of the "logic flow"
resulted in an overall reduction in array area. With this in mind, it was decided
to orient the pipelined version of the 4-bit multiplier array in the same manner;
that is, in the order of the "logic flow."
Before designing the 4-bit pipelined version it was necessary to
determine between what levels to insert a bank of D flip-flops. From inspection
of Figure 32, it was decided to insert a row of flip-flops between level _2 and

level_3 (see Figure 43). This would provide for two pipelined stages without
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splitting up the library 3-bit adder into individual adder units as was previously

done. The first stage requires approximately 17.6 ns to propagate the partial
multiplication products while the second stage requires approximately 14.9 ns
(32.5 ns - 17.6 ns). Here, one can see the limiting stage is comprised of level _0
thru level_2. In other words, the multiplier is limited to the pipelined stage with
the longest delay. However, one must also include the delay of the D flip-flops in
the overall timing calculation. The theoretical clock period (T) is determined
from the sum of the longest pipelined stage delay plus the flip-flop delay and the
setup time for the flip-flops. Here, the assumption is made that all stages in the
pipeline receive the same clock pulse simultaneously. In reality, due to circuit
lengths, loading, and driver circuits it is nearly impossible to guarantee that all
stages of a pipelined circuit receive the same clock pulse at exactly the same time.
From Table 2, and Figures 32 and 44, T is estimated at 23.1 ns [17.6 ns (slowest
stage delay) + 4.0 ns (D flip-flop delay) + 1.5 ns (setup time)].
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Figure 44 Input Setup and Hold Times for 4bmmPL
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The corresponding clock frequency was estimated at approximately 43 MHz
(1/T). The theoretical clock frequency for 4bmm2.RIRO was determined to be
approximately 26 MHz (1/38 ns) [32.5 ns (delay for entire array) + 4.0 ns (D
flip-flop delay) + 1.5 ns (setup time)]. 4bmmPL illustrates the increase in
throughput when pipelining is employed. The GENESIL floorplan and layout for
4bmmPL are shown in Figures 45 and 46.
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Foll_owing the construction and functional verification of 4bmmPL, a
timing analysis was performed to determine the accuracy of the predicted clock
speed vs. the actual clock speed as determined by GENESIL. The optibn "clocks"
was used to determined the worst case paths. From inspection of Figure 47, one
can see that the worst case path was determined to be 24.6 ns or approximately
40 MHz. This indicates the predicted value was in error by approximately 7%. It
is assumed that when the circuit is tested as a whole, greater accuracy is

achievable due to simulation of the loading conditions, as well as circuit length

delays.
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Figure 47 Clock Worst Case Paths for 4bmmPL

After a timing analysis was conducted, the orientation of the levels and
registers were varied to determine if a smaller layout could be attained.

The first attempt at decreasing the layout of 4bmmPL was to use
GENESIL's AUTO_PLACEMENT algorithm instead of manual PLACEMENT
during the FLOORPLANNING process. The resulting floorplan is shown in
Figure 48. It reveals a totally different perspective on arranging the Blocks
which comprise 4bmmPL. One can see how the algorithm placed the pipeline
register (PL_1) next to the input and output registers, DFF_IN and DFF_OUT
respectively. The resulting GENESIL layout is shown is Figure 49. GENESIL's
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AUTO_PLACEMENT algorithm was able to reduce the layout by approximately
28% by simply rearranging the Blocks during FLOORPLANNING.
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Figure 48 Floorplan from AUTO_PLACEMENT of 4bmmPL
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AUTO_PLACEMENT (3,476.5 mils2)

After observing the results of GENESIL's AUTO_PLACEMENT
algorithm, the author decided to "challenge" GENESIL's algorithm by splitting
PL_1 of Figure 43 in an attempt to further reduce the total area of 4bmmPl. The
splitting was accomplished by using two banks of D flip-flops. One bank
contained 8 flip-flops and the other 7. The two banks, labeled PL_1A and
PL_1B, were manually placed at the sides of levels 1, 2, and 3 as illustrated in
Figure 50. The resulting GENESIL layout is shown in Figure 51. Here, one can

also see the difference between what is shown in the floorplan view and the final
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GENESIL layout. This orientation did not result in a smaller total area than that

achieved by GENESIL's AUTO_PLACEMENT algorithm; 3477.5 mils2 versus
3850.7 mils2,

{; orr_1a . J
levc: oY
L -
level . 1 1
1 o
level .. 2
‘g ————,
: i
level _3
Lo e
level 4
i g L . - ;E‘\_‘
N AT ]

Figure 50 Floorplan of Split PL_1A and PL_1B of 4bmmPL
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Figure 51 GENESIL Layout of Split PL_1A and PL_1B of 4bmmPL
(3,850.72 mils?%)
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A final attempt at reducing the area was accomplished by stacking
PL_1A on top of PL_1B, and then positioning them between levels 2 and 3.
AUTO_FUSION was then selected. The resulting layout is shown in Figure 52.

Figure 52 Stacking of PL_1A and PL_1B of Split 4bmmPL

A rather surprising result was observed. It appears that the
AUTO_FUSION option "pushed” the two stacked registers below the final adders
even though the were manually placed between levels 2 and 3. This orientation
was not successful in reducing the total area as was AUTO_PLACEMENT.
Therefore, one must conclude that GENESIL's AUTO_PLACEMENT algorithm
is better able to place the individual Blocks of 4bmmPL to achieve a smaller total
area. Even though it was demonstrated that the orientation in Figure 49 resulted
in the smallest total area, it was decided to incorporate the orientation of Figure
46 into a Chip Module to better illustrate the concept of pipelining. Figure 53
shows the floorplan for the 4-bit multiplier Chip (4bmulti_chip) and its
GENESIL layout is shown in Figure 54.
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Figure 54 GENESIL Layout of 4bmuiti_chip (19,806.15 mils2)
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Note that the Chip Module 4bmulti_chip is approximately 445% greater in total
area than 4bmmPL.

C. DESIGN OF AN 8-BIT PIPELINED MULTIPLIER ARRAY
1. 8-Bit Multiplier Array
After the design of the 4-Bit pipelined multiplier array was completed,
efforts were directed towards developing the layout of an 8-bit pipelined
multiplier. The same basic techniques used in the development of the 4-bit
multiplier were applied.
A. Version 1

The first step was to extend the CAD drawing of Figure 22 to an 8-
bit array. Figures 55 and 56 show the CAD drawing for an 8-bit parallel
multiplier array (version 1 was labeled 8bmm.1). Note the final row of adders.
Each final adder (FAP8-FAP14) is a 1-bit full adder. The carryout of each adder
is rippled to the adjacent adder to the ieft. A generic level_k, comprised of 8 full
adders and 8 AND gates, was employed to construct the array.

The AUTO_PLACEMENT algorithm was used during FLOOR-
PLANNING in order to evaluate its placement of the blocks for the array.
Figure 57 shows the results of GENESIL's AUTO_PLACEMENT algorithm for
8bmm.1. One can see a similarity to Figure 24. Note how the
AUTO_PLACEMENT algorithm in both cases positioned the smallest block at
the top of the array. Also, note in Figure 57 that the levels are not arranged in
the order of "logic flow." Figure 58 shows the GENESIL layout for 8bmm.1
with a total area of 8157.5 mils2. One can see a thickening of metal between
level_2 and the other adder levels, as well as to the left of the array in both the

upper and lower regions.
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Before further modifications to the array were made, the
functionality was verified. Following the functional verification, a timing

analysis was conducted and the results are shown in Figure 59.
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B. Version 2

Following the functional verification and timing analysis for

8bmm.1, the orientation of the ADDER/AND levels of the multiplier was
changed to reflect the order of logic flow. The floorplan for this orientation
(labeled 8bmm.2) is shown in Figure 60. Note the spacing between the levels of
the floorplan. This was done for comparison with the next iteration to determine
what effect spacing and overlap would have on the overall multiplier size. Figure
62 shows the resulting GENESIL layout. Comparing Figures 58 and 61, one can
see the latter is a "cleaner” looking layout with minimal metal running
throughout the array. The reéulting area was calculated to be approximately
8474.23 mils? compared to 8157.51 mils2 for 8bmm.1. This represents
approximately a 4% increase in area. A timing analysis was also conducted to

determine if this orientation resulted in a lower propagation delay for P15. The
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Figure 60 Floorplan for 8bmm.2
Figure 61 GENESIL Layout of 8bmm.2 (8,474.23 mils2)




results of the timing analysis indicate that there was no significant difference in
the propagation delay for P15 (52.3 ns vs 53.5 ns for 8bmm.2 and 8bmm.1,
respectively).
C. Version 3

The next iteration (8bmm.3) was done specifically to determine if
the multiplier area could be reduced if adjacent levels were slightly overlapped
during FLOORPLANNING. Figure 62 sk~ws how the individual layers were
manually placed and ovérlapped during the FLOORPLANNING process. The

resulting layout for 8bmm.3 was similar to Figure 61.
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Figure 62 Floorplan for 8»mm3

The resulting area was calculated to be 8513.23 mils2. This
represents an increase of approximately 1% over 8bmm.2. This suggest that
overlapped levels will be separated by a slightly greater amount than if they were

adjoining each other.
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D. Version 4
| The next iteration (8bmm.4) was a modification to 8bmm.3 by
replacing the final individual 1-bit adders with a 7-bit adder. As observed in
4bmm.2, it was expected that the propagation delay of the final product (here
P15) would be reduced. Figure 63 shows this modification to level _8. The

floorplan for 8bmm.4 was identical to 8bmm.3 (see Figure 62).
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The resulting layout is shown in Figure 64. Close inspection of level _8 reveals a
higher density for the 7-bit adder than for the individual adders of 8bmm.3. A
timing analysis was performed on 8bmm.4 and the results are shown in Figure

65. As expected, the delay for P15 of 8bmm.4 was reduced by 6.5 ns (67.6 ns -
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61.1 ns) which represents an reduction of approximately 6% in propagation
delay.
E. Version 5§

The last iteration of this particular orientation centered the final row
of adders directly below the last level of the array as in 4bmm.4. The layout
(8bmm.5) is shown in Figure 66 which resulted in a reduction of approximately
2% in total area over that of 8bmm.4. Also, there was no change in the timing

analysis; it was the same as for 8bmm.4 (Figure 65).

Figure 66 GENESIL Layout of 8bmm.5 (8,395.65 mils2?)
F. Version 6
The last version of the 8-bit multiplier (8BITMOD) array was

constructed from four 4-bit multiplier array modules (see Figure 22). The
floorplan for 8BITMOD is shown in Figure 67. Each 4-bit multiplier array

module was attached to a common general module, as well as a single random
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logic Block containing the final adders. Although this particular orientation did

not result in a reduction in total area, the design was very useful in learning how

4-bitblk2 4-bitbik 1

4-bitblk4 4-bitblk3

ADDER

Figure 67 Floorplan for 8BITMOD

to use OBJECT_NETLIST and NET_NETLIST. 8BITMOD required extensive
use of OBJECT_NETLIST when interconnecting the four individual modules,
particularly, Qhen routing signals across the module boundaries. For example, a
signal can be identified inside a module as signal "x" but when the signal line
leaves the module and is routed to another module, one can change its name to
signal "y". This property was very useful and minimized the requirement to
"customize” each individual 4-bit multiplier. The GENESIL layout for
8BITMOD is shown in Figure 68. The total area is approximately 8993.1 mils2.
This was the largest of the 8-bit parallel multiplier arrays.

Before starting the design of the pipelined version of the 8-bit
parallel multiplier array, a decision had to be made regarding what orientation to

implement. Based on size only, 8bmm.1 (Figure 58) would be favored because
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it had the smallest area. However, due to the size (width) of the D flip-flops
required to pipeline the array, the orientation of 8bmm.5 (see Figure 66) was

selected. The decision to implement the orientation of 8bmm.5 was also based on
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Figure 68 GENESIL Layout for 8BITMOD (8,993.1 mils2?)
the inherent symmetry of the array which would lend itself to simple horizontal
cuts for inserting the pipeline registers.
2. 8-Bit Pipelined Multiplier Array

The first step in designing the pipelined 8-bit multiplier array was to
inspect the timing analysis of 8bmm.5 to determine between what levels the
pipelined registers should be inserted. Based on the output delays of 8bmm.5
listed in Table 3, the array was divided into four pipelined stages. The product
out of the first stage (P2) was a&ailable after a 17.6 ns propagation delay and the

outputs from the other stages were nearly a multiple of this delay.
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TABLE 3 TIMING ANALYSIS FOR 8BMM.5

Product| PO | P1 | P2 {P3 | P4 |P5 |P6 | P7 | P8 | P9 | P10] P11] P12| P13]| P14] P15

ool | 6.8 [12.1)17.8]23.1]28.934.3]40.0]45.3]49.7[ 51.5]53.4|54.7]56.6] 57.9[ 59.8] 6 .

Table 3 suggest inserting registers between products P2/P3, P5/P6, and
P9/P10 which will result in nearly equal delays for each stage. This corresponds
to inserting registers between levels 2/3, 5/6, and P9/P10 of Figures 55 and 63.
The insertion of registers between P9/P10 required a modification to the final
row of adders in level_8. This modification (8bmm.5A) is shown in Figure 69
below. It was necessary to split the original 7-bit adder of 8bmm.5 into a 5-bit

and 2-bit adder to accommodate the insertion of the final pipeline registers. A

ety

LEviy .o

Figure 69 Modification to Level 8 (8bmm.5A)
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timing analysis was conducted on 8bmm.5A and the results are shown in Figure

70 below.
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Figure 70 Timing Analysis for 8bmm.5A

The results show a 17.8 ns delay for the stage 1 (levels 0-2), a 16.5 ns
delay for stage 2 (levels 3-5), a 16.4 ns delay for stage 3 (level_6 thru P9), and

an 8.8 ns delay for stage 4, the final row of adders. This is summarized in Table

4 below.

TABLE 4 OUTPUT DELAYS FOR PIPELINED STAGES 1-4

STAGE LEVELS OUTPUT DELAYS (ns)
0-2 17.8
3-5 16.5
. 6-P9 16.4
P10-P15 8.8

A ] Lo
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Following the timing analysis, a CAD drawing depicting the pipelined 8-
bit multiplier array (8bmmPL) was made. Figure 71 shows the upper third and
Figure 72 shows the middle third of 8bmmPL. Figure 73 shows the lower third

of this array.
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Figure 71 CAD Layout of 8bmmPL (Upper Third)
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The basic signal naming scheme was modified, due to the presence of
pipelined stages, by use of an underline character "_" to indicate signals which

passed through pipelined stages.
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Figure 73 CAD Layout of 8bmmPL (Lower Third)

Note in Figure 73 how the first two adders are separated from the final
row of adders in level 9. This resulted from the splitting of the original 7-bit
adder in order to pipeline in four stages. The floorplan for the array is shown in
Figure 74 and the GENESIL layout is shown in Figure 75. One can clearly see
the individual levels and pipeline registers. However, one can also see unused
spaced between the first two stages to the left and right of the array. One can also
see the two adders, which produce P8 and P9, and the empty space surrounding
them. Yet, overall, the structure clearly shows the logic flow of the array and

demonstrates the physical concept of pipelining.
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Following the functional verification of 8bmmPL, a timing analysis was
conducted to determine the worst case paths. The results are shown in Figure 76.
The worst path was determined to be 26.7 ns which corresponds to clock rate of

approximately 37.45 MHz,
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Figure 76 Worst Case Path for SbmmPL
Finally, 8bmmPL was incorporated into a multiplier Chip
(8bmulti_chip) which resulted in a total area of 44,488.41 mils2. Note the Chip
Module (8bmulti_chip) is approximately 2229% greater in total area than
8bmmPL. Figure 77 shows the GENESIL layout for 8bmulti_chip.
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Figure 77 GENESIL Layout for 8bmulti_chip (44,488.41 mils2)
3. 16-Bit Pipelined Multiplier Array
A 16-bit pipelined multiplier array, incorporating parallel multiplier
cells, was not implemented in this study; however, from Figures 75 and 77 a
projection of its core size (without PADS) was estimated to be 99,328 mils2 (256
x 388), whilé its Chip size was estimated at 140,800 mils2 (320 x 440). Figure 78
shows a Block level layout for this multiplier. Its operating speed was estimated

at 38 MHz; the same as 8bmmPL.
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Figure 78 Block Level Layout of a 16-Bit Pipelined Multiplier
Array
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V1. LIMITATIONS OF THE SILICON COMPILER

It was a goal of this thesis to fully explore and probe the GENESIL Silicon
Compiler system in order to determine its practical limits in parallel multiplier
array design. During this course of study, two apparent limitations of the GSC
system in parallel multiplier array design were discovered. They are:

» Component density.
* Vertical feedthrough.

The most significant limitation of the GSC system appears to be its inability
to achieve high component density in parallel multiplier arrays of the type
implemented in Chapter 5. Here, component density refers to the relative
distance between levels of a parallel multiplier array, as well as between
individual components comprising the array. It appears that high density is
precluded because of the abutting of the power buses Vpp and Vgg of the
individual components of the array. Figure 79 shows this abutment between
adjacent components. Higher density might be achieved if the power buses of
adjacent components were permitted to overlap. Additionally, the relative size
(width) of the power buses appears to be a factor contributing to the separation
between components.

The second limitation of the GSC appears to be its inability to establish
vertical feedthrough between adjacent levels of ADDER/AND components in the
parallel multiplier arrays in this study. As stated earlier, an attempt was made to
increase the density of the arrays by collapsing the array vertically by moving
the AND gate to the top of the ADDER and then rotating the two blocks

clockwise 90°. After rotating the two blocks, a feedthrough Block was attached to

86




each AND gate. This proved unsuccessful in passing the xj from the AND gate of
the upper level to the AND gate in the level below. Figure 80 shows just one of
several attempts to establish vertical feedthrough.

Although the GSC system did not perform as desired in this study, it offers a
viable alternative to the labor intensive, full custom, VLSI graphic layout tools in

use today.
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VII. CONCLUSIONS

A. SUMMARY

The main goal of this thesis was to describe the design methodology and the
process of employing the GENESIL Silicon Compiler (V7.1) in the layout of a
pipelined multiplier, in 1.5 micron CMOS technology, using a parallel multiplier
cell array. There was an additional goal of determining the practical limits of the
GSC in parallel multiplier array design. Finally, there was the intent to produce
a document with sufficient background material for those readers not well versed
in digital design methodology in order that they might gain some understanding
of the methods involved in the design of a pipelined parallel multiplier array.

The material in Chapter 2 provided a brief introduction to one particular
silicon compiler, namely the GENESIL Silicon Compiler (GSC). Chapter 3
provided a review of the basic principles of digital multipliers, while Chapter 4
covered the basic concept and theory of pipelining. The design iterations of
several pipelined parallel multiplier arrays, incorporating parallel multiplier
cells, were presented in Chapter 5. Comments regarding the practical limits of
the GSC system when implementing the parallel multiplier array designs of this
study were presented in Chapter 6.

The results of this thesis indicate that a parallel multiplier array,
incorporating parallel multiplier cells, can be successfully implemented in the
GSC system. However, two practical limits of the GSC system precluded
achieving the degree of high component density (smaller size) made possible by

full custom manual/CAD design methods using graphic layout tools.
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B. RECOMMENDATIONS
The author makes the following recommendations:

« Install version 8.0 of the GENESIL Silicon Compiler at the Naval
Postgraduate School as soon as possible.

+ Explore version 8.0 fully to determine its capability to establish
vertical feedthrough. If successful, incorporate this feature into future
parallel multiplier array designs for comparison with full custom
manual/CAD designs using graphic layout tools.

« Investigate ways to reduce the CPU loading on the VAX system during
normal working hcurs in order to enhance the performance of the GSC
system.

« Allow for 3-4 months in learning to use the GSC. Preferably one should also
attend the one week training course offered by Silicon Compiler System
Corporation of San Jose, California.

« Incorporate the GSC system into, and make it a regular part of, a course of

instruction at the Naval Postgraduate School.
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